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• Verification challenges, and so cost, keep increasing

• To cope with system complexity, need to boost verification
o No compromise in quality 

Intro and background
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• Verification: "Have we made what we were trying to make?”
o i.e., does the product conform to the specifications?

• Validation: "Are we trying to make the right thing?”
o i.e., is the product specified to the user's actual needs?

Intro and background
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ROI
Quality
Cost
Risk
Schedule

Limited scope (users and problems)

• Massive model checking research in academia and industry
• Proprietary model checking solutions (Intel, IBM, AMD, DoD, …)
• Datapath formal verification research
• Commercial EQ tools (Chrysalis, Verplex/LEC, Formality, …)
• Standard formal specification languages – PSL, SVA
• Sequential equivalence checking solutions leveraging model checking
• Early adoption of formal verification – “the experts usage model”

A Decade of Early Industrial Formal Verification (1995-2005)

1990 2000 2010 2020
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ROI
Quality
Cost
Risk
Schedule

Disruptive Formal Verification – Formal ‘Apps’

SavingsIntegrateVerifyDesign Post-SiArch

Arch IntegrateVerifyDesign Post-Si

Limited scope 100s of active users

2.5X better ROI than 
simulation

Late-change verification in 
a day vs. a week

Bugs found earlier: 82% 
code churn reduction

84% of bugs found 
automatically

1990 2000 2010 2020
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ROI
Quality
Cost
Risk
Schedule

Limited scope 100s of active users 1000s of active users

Formal Verification becomes Mainstream

• Formal Signoff
• Scalability
• Formal “Value Links”
• Software FV
• Ease of use

1990 2000 2010 2020+
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Formal is for Many People!
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• Use of formal methods and in particular model checking in the EDA industry is 
wide spread and now considered an essential part of the verification flow.

• While there are many papers, and books, about SAT, SMT and Symbolic Model 
Checking, less is written about the specifics of how these methods are applied.

• Focus here is on RTL (register-transfer level) hardware designs.

• There is generally no formal semantics defined for the hardware design 
languages, nor for the intermediate representations in common use.

• As unsatisfactory as that may be, industry conventions and behaviour exhibited 
by real hardware have instead had to be used as guides.

Intro and background
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• The increasing tool capacity, and user familiarity has lead to wider usage,
both earlier and later in the design cycle, as well as on ever larger design parts.
o Input might not be in Verilog/VHDL, could be in XLS, Murphy, SystemC/C++ etc.
o Or could be on already synthesized (gate level) netlists with implementation artifacts present

• Applying formal on larger parts of the design flow comes with new challenges.
o Scan and Test logic used by post-silicon debug and by testing machines to accept / reject 

individual chips.
– A scan chain will make it appear as if almost all of the registers are in the COI of all others…

o PAD rings, I/O pad drivers, ESD structures for bond pads etc.
– Generally non-digital parts to interface the ‘outside world’

o Verilog UDPs (user defined primitives), Cell libraries, transistor primitives, …  
o UPF / CPF, power specifications that modify the RTL

– To conserve power parts are turned off (and on), functionally should still be preserved

• There will be all kinds of ‘bugs’ (including input & expectations)

Intro and background
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• Synthesis for verification, netlists, gates and hierachy flattening

• Value domains, Tri-states, weak-driver resolution

• Constraints and environment modeling

• Initialization / Reset

• Clocks and creating a discrete time model

• Feedback and loops

Topics
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Synthesis for verification
Netlists, gates and hierachy flattening
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• A common intermediate for digital circuit implementation is what’s referred to as 
a register-transfer level (RTL) description.

• RTL is a design abstraction which models a synchronous digital circuit
o Logical operations performed on signals and their flow between hardware registers.
o It’s low level enough to describe exactly behaviour per cycle while still allowing designers to 

understand and modify it.

• Hardware description languages (HDLs) are used to write RTL designs
o Verilog, now SystemVerilog, IEEE Std 1800-2017 is the dominating language 
o There is also VHDL IEEE Std 1076-2019

• There are two industry standards for formal specifications
o SystemVerilog Assertions (SVA) IEEE Std 1800-2017 and
o Property Specification Language (PSL) IEEE Std 1850-2010, commonly used with VHDL.  

Synthesis for verification - Input
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states = {0,1,2,3}
init = ??
reachable = ??

rst
en&!rst
!en&!rstcnt

Example – A ‘strange’ 2-bit counter and asserts in SystemVerilog
module counter (clk, rst, en,
cnt);

input clk, rst, en;

output reg [1:0] cnt;

always @(posedge clk)
if (rst) 
cnt <= 2'd0;

else if (en) 
if (cnt[1]) 
cnt <= ~cnt;

else
cnt <= cnt + 2'd1;

p1: assert property (
@(posedge clk)
disable iff (rst)
en |=> cnt != 2'd0

);

p2: assert property (
@(posedge clk) 
en |=> cnt <= 2'd3

);

p3: assert property (
@(posedge clk) 
en |-> s_eventually 

(cnt == 2'd0)
);

endmodule
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• Design compilation, also know as elaboration and synthesis, is used to create a 
gate netlist from the HDL.
o When done for implementation this often leverages any semantic freedom in order to create 

a more efficient implementation.
o In contrast for verification we prefer to preserve all possible behaviour of any valid 

implementation choice.

• For implementation, the target is gates/cells provided by the foundry.
o Can change with technology node targeted (e.g TSMC 5nm)

• Any under-specified behaviour might be leveraged to reduce the logic
o Verilog ‘x’ value is mostly considered to be a don’t-care value for synthesis.
o F.ex. Indexing outside of an array bound is specified (for some types) as returning ‘x’

– reg [3:0] a;  a[5] should give 1’bx, but synthesis tool might decide to use only 2-bit to index a, resulting in a[1] 
o There can be explicit assignments of ‘x’, or overlapping conditions in switch statements

– Or a promise that one case will match (but no guarantee).

Synthesis for verification
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• When synthesising for verification we can chose the target gates
o Reduce the complexity of synthesis
o Be easy to consume for model checking
o Ease the debug flow

• ‘Quick’ synthesis keeps gates close to source language constructs
o Dataflow, width and symbol resolution is made explicit

• Common classes of gates
o Logic: (N-ary) And, Or, Xor, etc and ‘reduction’ variants (N-bit input with 1-bit output)
o Arithmetic: Adders, Shifts, Multipliers, Dividers, …
o Control/Data flow: Mux (ITE), Selectors, Decoders, Array operations (concat/slice/index/...)
o State elements: Flops, RAMs, Latches,
o Other more specialized gates

– Tri-state drivers, Transistor primitives, …

Synthesis for verification
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• A gate Netlist is a hierarchical representation using Ports, Instances and Nets
o Instances are components defined by another netlist or a ‘primitive’ gate
o A Net represent a wire
o Ports on instances are connected to other ports by Nets

• Removal of hierarch can largely be done replicating the logic (called flatten).
o Easier to not have hierarchy but can lead to a large increase in size,  also structure is lost.

• Most gate types represent combinatorial functions
o These can be kept as is, or lowered to smaller subset of gate functions

– For example AND-gates & NOT-gates if targeting And-Inverter graphs (AIGs).
o Size might increase, and here too some of the original structure would be lost.

• The state holding gates, (Flip-)Flops (edge sensitive) and Latches (level 
sensitive) require some more care to model their (a)synchronous behaviour.
o More on that later…

Hierachy flattening
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• Properties, in SVA and PSL, express assertions, covers and constraints*
o These languages are mostly equivalent to LTL with a lot of syntactic ‘sugar’

– Sequences looks a bit like regular expressions, makes it easy to express delays and repetitions. 
o PSL also specifies an optional branching extension that covers CTL properties.
o Another extension is local variables, helpful when verifying data paths (transport) this takes 

things outside the LTL expressive power.

• The properties are compiled to an automat representation
o Which is similarly translated to an circuit, and implemented as part of the netlist.

• All properties can be reduced down to a few canonical forms
o Safety: the LTL formula ‘G !bad’ (a model for the negation ‘F bad’ is a CEX / Failure)
o Liveness: the LTL formula ‘G F good’ (a model for ‘F G !good’ is a CEX / Failure)
o (Deadlock: the CTL formula ‘AG EF good’, not expressible in LTL, sometimes Fair-CTL)

Specification - Properties
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• Properties can also be generated by the tool.
o This is attractive for new / non-formal savvy users, and a compliment to user written 

properties.

• Generated from the structure of the code
o Works like compiler Lint checks, or the now popular Clang/GCC sanitizers.
o There can be a large number of these properties (for large code bases).
o The advantage is that model checking provides a definite answer rather than relying on 

heuristic (with false positives) or requiring a test framework to trigger the ’bad’ scenario.

• Pre-packaged
o In hardware design it’s common with standardized protocols for IP-blocks.
o For these there often exist reusable collections of ‘checks’ and/or constraints

• There are many design rules and patterns that lend themself to automation
o Reset & Clock networks, Connectivity (between components), Configuration and Status 

registers, Power intent.  Often specified with IP-XACT, spread-sheets or the like.

Specifications
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Value domains, Tri-states, weak-driver resolution
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• Verilog wire uses a domain with 4-values {0,1,X,Z}
o Z is high-impedance value / not-driving.
o X is unknown value / ternary X

• The language specifies the behaviour of gates in the 4-value domain, f.ex.
o assign a = b & 1’bX;                  // a is 0 iff b is 0, otherwise X
o assign c = d & ~d;                     // c could be X even though it seem it should always be 0
o if (a) d <= 1’b1; else d <= 1’b0; // d can’t be X, it is 0 if a is 0 or X (or Z) otherwise 1
o d <= a ? 1’b1 : 1’b0;                  // here d can be X, if a is X. 

• Sometimes explicitly used in simulation to catch bad behaviour.
o As they propagate far and are easy to check for on the outputs (when viewing a trace).
o Problems like when x’s vanish, as in the if-statement above, is referred to as X optimism.

• In the resulting implementation (silicon) result there are no ternary X’s though!

Value domains
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• Literal ‘X’ will often be interpreted by synthesis tools as don’t-care condition
o Allowing it to create smaller / better netlists.
o Targeting formal verification this has to be prevented, to preserve all possible behaviour 

• Example:
o case(sig[1:0])

2’b10: a <= 1’b1;
2’b01: a <= 1’b0;
default: a <= 1’bx;

endcase
o If the design ensures that ’sig’ here will only ever take the value b01 and b10 

• Specialized formal models to check that X’s can’t propagate / interfere.
o For this a differential encoding is used, and not a ternary (dual-rail) encoding!
o This is to more closely match silicon, rather than simulation, behaviour.

Value domains
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• Special care is also need to modelling is Tri-state elements (and weak drivers).
o Tri-states conditionally drive a value, or hold it’s output isolated.
o The Z is high-impedance / not-driving value is involved here.
o There are ‘weak’ constant 0 and 1 drivers, called pulldown and pullup.

• Resolving the drivers means replacing the gates, that drive a common wire, 
with a model for the resolved logic value 
o At most one non-weak driver? or maybe all strong drivers must have drive the same value..
o If no strong driver, take value from a weak driver

– must not have weak drivers driving different values
o If any of the conditions are violated allow a ‘free’ (indeterminate) value
o Can generate asserts (like lint/sanitizer checks) for the necessary conditions.

• It’s also possible to specify ‘strengths’ on primitive gates (how much current can 
be driven).  For logic correctness this mostly does not matter.

Tri-states, weak-driver resolution



© 2022 Cadence Design Systems, Inc. All rights reserved.24

module cregs(inout[15:0] mdata, input rst, clk, oe, we, input [1:0] addr, …)
reg[15:0] data_out, reg_addr0, reg_addr1;
wire[15:0] data_in;

assign mdata = oe ? data_out : {16{1’bz}};
assign data_in = mdata;

always @(posedge clk) begin
data_out <= addr == 2‘d0 ? reg_addr0 :

addr == 2’d1 ? reg_addr1 : 16’d0;
if (we && addr == 2’d0) reg_addr0 <= data_in;
if (we && addr == 2’d1) reg_addr1 <= data_in;

end

Inout / high-impedance example 
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Constraints and environment modeling



© 2022 Cadence Design Systems, Inc. All rights reserved.26

• It is common to have configurations, modes of operation or parts that should 
not be validated.

• Forcing inputs to fixed values is referred to as pin, or environment, constraints.
o Examples include disabling Test mode, Scan logic, tying power/ground ‘supply’ to 1/0, etc.
o The verification plan might be divided such that each mode is verified independently.
o Inputs not allowed to change during operation, use stability or pseudo-constant constraints. 

• Input that should provide clocks, that have a fixed periodic behaviour.
o Can often be given as a period & phase or an explicit repeating pattern. 

• More complex constraints are normally considered part of the verification setup
o Custom SV assumptions and support logic.
o Standardized protocols might exist as pre-packaged IP modules.
o Companies might also have re-usable collateral for internal interfaces/protocols.
o In equivalence checking there is ‘reference’ implementation, not strictly a constraint.

Constraints and environment modeling
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• The simple constraints that give rise to fixed and periodic values can fairly 
easily be leveraged to reduce the representation.  

• Rebuilding using structural hashing can handle constants, and trivially 
equivalent gates, but it’s possible to do better.

• Ternary simulation* can also handle periodic signals
o Equivalent ones can be merged, and normalized representation used for the remaining
o *A cheap way to compute over-approximate ‘reachability’, using X for unknow inputs/state.

• Often leads to the set-of-support being reduced for many functions

• The now disconnected parts can be dropped (or disregarded in later stages)
o Commonly referred to as Cone of influence (COI) reduction

Model reduction under environment constraints 
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• Almost all papers make an assumption that is often not true for our models.

• “The transition relation must be total, for every state s, there exists state s’, s.t. 
R(s,s’).”

• When the transition relation is the conjunction of (Boolean) next-state functions 
this hold because the functions are total.

• With constraints, meaning functions that must evaluate to True, it is easy to 
become non-total if they are part of the transition relation
o A function can’t evaluate to True for some particular state (for any input values)
o A combination of functions can’t all evaluate to True for some particular state …

Over-constraining & Dead-ends 
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• A state that has no next-state (not even it self) is referred to as a dead-end.

• If all paths eventually dead-end, we say that the design is over-constrained.

• Does a safety property that has a finite contradicting evaluation on a over-
constrained design fail?
o The constraints are not ‘always’ satisfied…

• However that would mean that every proof would have to ensure that there exist 
an infinite future satisfying all the constraints.

• Users might also be surprised
o ‘I can clearly see my property contradicted by this trace, why did the tool miss that?’
o ‘Because your constraint will be violated in the future…’ 

Over-constraining & Dead-ends 
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• The established convention is that constraints do not need to hold after a failure.

• This causes some problem too
o When does a property fail?

– is ‘X False’, contradicted now, or only after one time step?
– The compilation of the properties to automat / circuits need to carefully consider this.

o Effects of constraints must not be applied too early, or too late…
– Must take extra care when extracting invariants or making temporal transforms

• Common implementation strategy is to ‘fold’ constraints into the property check
o Property becomes non-bad if any constraint was False
o Reachable states are not limited by constraints!

Over-constraining & Dead-ends 

&

ff

constraints

1

& bad’
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Initialization / Reset
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• In simulation it is possible to simply force a particular initial value
o A code block that will only execute initially before main simulator event loop.

– Verilog has ‘initial’ blocks for this that, unlike ‘always’ blocks, only execute once.
o Using ‘force’ statements from the test bench code (test driver). 

• On the hardware side, ‘starting’ means applying power to the design.
o The state elements is best modelled as having arbitrary (unknown) values when coming 

from an un-powered state.

• To initialize the hardware a cold/hard reset is done
o That is a sequence of inputs are used to transition the system from any state to one of set 

of states from which it will exhibit predictable (and hopefully correct) behaviour.

Initialization
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• Design are written to enable being initialized with reset.

• Flops can have asynchronous reset (not depending on the clock)
o always @(posedge clk or posedge rst)

if (rst)
areg <= 1’b0;

else
reg <= areg_nextstate; 

• Synchronous reset, or receive values from other flops and/or inputs
o always @(posedge clk) sreg <= rst ? 1’b0 : sreg_nextstate; // Reset if clk is know to ‘tick’
o always @(posedge clk) reg <= ns;  // Reset correctly if ‘ns’ gets a reset value 

• Yet other might be left uninitialized if their value does not affect the behaviour.
o i.e., updated before they are used in a way to will influence something else

Flop reset
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• Simple reset is a few signals held active a fixed number of cycles
o Convention is often for reset signals to be active low (e.g False / 0)

– Commonly denoted with a ‘n’ or ‘l’ prefix/suffix.

• Examples from OpenSPARC T1 / Niagra
o reset -expression  ~dram_arst_l ~dram_adbginit_l ~jbus_grst_l ~dram_grst_l ~cmp_grst_l
o INFO (IRS018): Reset analysis simulation executed for 48 iterations. Assigned values 

for 6517 of 15784 design flops, 0 of 4 design latches, 486 of 486 internal elements.
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• The formal model would start from every design state (all state variable free) 
and apply the reset sequence as temporal constraints.

• This is exact but makes the problem sequentially deeper (by the length of the 
reset sequence).

• Temporal decomposition can be used to partition the problem, avoiding or 
significantly reducing the overhead.

Initialization / Reset

TR TR TR

constraints constraints constraints

inputs inputs inputs

…

sk-1s0 s1 s2 sk-2

TR TR

constraints constraints

inputs inputs

…

sk sk+2sk+1

Reset sequence Effective Verification

free 
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• Due to the reset sequence commonly being specified only on inputs, ternary 
simulation can be used to derive an over approximate set of initial states.
o Initial state values and inputs not specified in the sequence are taken as ternary X

• Any X in the simulated end state is treated as free value (input) for the formal  
Model Checking problem.

Initialization / Reset

NS NS NS

stimuli stimuli stimuli

…

sk-1s0 s1 s2 sk-2

Reset sequence

all X 
Simulated 
result, 0/1/X 
assigment
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Clocks and Discrete Time Models
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• For power and performance reasons it is common that designs are multi-
clocked, or that clocks are gated (can be turned off and on).

• To have global synchronous model for verification we need to reduce these 
multi-clock systems to a single global system (or tool) clock.

• It’s assumed that there is one common domain (all changes are synconous)
o Checking the interaction, when this is not assumed, is referred to as Clock Domain Crossing

• The environment constraints specify the rate of change of the inputs.
o If clock are not specified with a fixed pattern all possible rates and interleavings will be 

allowed.  This can create prohibitively difficult model checking problems though. 

Clocks and creating a discrete time model
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• Flops update on the rising edge of their clock.
o always @(posedge clk) // ‘execute’ the block when there is an posedge event

flop_name <= driver;

• Latches are transparent when enable is high and hold their value when its low.
o always @(enable or driver)

if (enable)
latch_name <= driver;

• Inputs are free to take any value, but environment specifies the ‘rate’
o Clock generators, as mentioned, give their inputs a deterministic, periodic, pattern.

• Flops can also have additional asynchronous inputs
o A reset/set (or both) that will update the flop value regardless of if the clock has a rising edge

Clocks and creating a discrete time model
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• The basis of the model is handled by mux-feedback added for the flops/latches
o A state/delay element that update on the global clock.
o Need to create the condition under which the value will be updated.

• Flop with reset and clock

o next(state) := !rst & (wr(clk) ? d : state)
o wr(clk) := !clk & next(clk)
o q := !rst & state

Clocks and creating a discrete time model
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d ff q

rst
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rst
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• The basis of the model is handled by mux-feedback added for the flops/latches
o A state/delay element that update on the global clock.
o Need to create the condition under which the value will be updated.

• Latch

o next(state) := en ? d : state
o q := en ? d : state

Clocks and creating a discrete time model

en

d Latch q

ct

ff 0

1

d
en

q
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Feedback and loops
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• In real hardware there will be some delay between an input changing and when 
the effect can be seen on the gate output.
o There can also be limits to how closely together (in time) two inputs may change (e.g. the 

data input of a flop must be stable for some time before the clock edge).
o This is what limits the rate of the clock (the MHz/GHz one hears about).

• In formal verification we would prefer to not deal with this.
o There are other tools that validate these timing constraints.

• Informally a zero-delay model means 'infinite speed of updates’
o i.e. gate inputs & outputs always have consistent values (without delay)

• No net can have more than one value within / per time point
o Matches normal Boolean functions/predicates 

Feedback and loops
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• Feedback loops in the netlist could cause contradictions
o When a net would have two (or more) values, had there been a non-zero delay

propagating values through the gates.

Feedback and loops

Type Potential Issues
Flop - data None - Formal friendly (there is time step delay)
Flop - clock Glitches
Latch - data Stable / Unstable loops
Latch - enable Multiple open/close events
Combinatorial gates Ruled out by construction? (Stable / Unstable loops)
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• Recall the flop model (here without reset)
o next(state) := wr(gclk) ? d : state
o wr(gclk) := !gclk & next(gclk)
o q := state

• What if ‘clk’ has ‘q’ in it’s support (fan-in)?
o next(state) := wr(gclk) ? d : state
o wr(gclk) := !gclk & next(gclk)
o gclk := clk & state 
o q := state

• Humm…
o wr(gclk) := !(clk & state) & next(clk) & next(state)
o next(state) := !(clk & state) & next(clk) & next(state) ? d : state
o NOT GOOD: if state is True, then either d must be True, or !clk &next(clk) must be False!

Flop clock feedback

ffd

clk &

gclk

d ff q

q
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• Mostly, in correct designs, this does not happen.
o To ensure that the clock does not change twice a latch is used to stabilize the path.

o next(Fstate) := wr(gclk) ? d : Fstate
o wr(gclk) := !gclk & next(gclk)
o q := Fstate

o next(Lstate) := !clk ? q : Lstate
o lq := !clk ? q : Lstate

o gclk := lq & clk
o … gclk := (!clk ? q : Lstate) & clk
o … gclk := Lstate & clk
o … wr(gclk) := !(Lstate & clk) & next(Lstate) & next(clk)
o … wr(gclk) := !(Lstate & clk) & (!clk ? q : Lstate) & next(clk)
o … wr(gclk) := q & !clk & next(clk)   // e.g.  q & wr(clk)

Flop clock feedback

ffd

&

q

Latch

clk

gclk
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• Latches have a direct (combinatorial) path when enabled
o feedback from the output back to its data input can create a loop

• Functional loop condition
o en & g
o en & function(g1 .. gn)

• If the condition is False the model is unproblematic.
o In benign cases the ‘function(g1 .. gn)’ will be False whenever ‘en’ is True
o Often there are pairs of latches with exclusive enable conditions

Latch data feedback

en

Latch q&g Latch

eng1 .. gn
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• Latches have a direct (combinatorial) path when enabled
o feedback from the output back to its data input can create a loop

• When ‘en & function(g1 .. gn)’ is True the path is open
o For a polarity inverting path, there will be a contradiction (d == !q && q == d).
o Essentially ruling out models where ‘en & function(g1 .. gn)’  would be True.

• For a polarity preserving path ’q’ will be free
o It will be independent even from the history (state in ‘ff’)

• Changing value without any cause is a divergence
from simulation as well as silicon behaviour. 

Latch data feedback

ct

ff 0

1

eng1 .. gn

q

d
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• Adding ‘delta’ delay by means of repeating path logic

• How many such step are required?

• If the path is false, q’ is irrelevant (not observable at q).

• If the path is true, and the extra steps did not resolve the functional dependency
o Polarity preserving: q and there for q’ should maintain its value from the previous ‘full’ cycle.
o Polarity inverting: The value of q will be inverted or not depend how many step where used…

Feedback and loops

ff

0

1

en
g1 .. gn

q
0

1

∆-1(en)∆-1(g1 .. gn)

q’
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• As seen the zero-delay model has some undesirable properties when there are 
loops in the netlist.

• Adding ‘delta’ delay on the path?
o Can lead to a large increase of the representation if there are many loops
o Will work if (a conservative limit on) the number of ‘delta’ steps needed can be determined.
o However for oscillating loops there is no upper limit.

– A final ‘break’ or use of prior full will still be needed.

• Can we solve it by adding extra check to flag netlists that have these issues?
o Deriving the loop condition (’function(g1 .. gn)’) is a challenge in the general case.

Feedback and loops
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